The effects of high myoplasmic L-lactate concentrations (20-40 mM) at constant pH (7.1) were investigated on contractile protein function, voltage-dependent Ca(2+) release, and passive Ca(2+) leak from the sarcoplasmic reticulum (SR) in mechanically skinned fast-twitch (extensor digitorum longus; EDL) and slow-twitch (soleus) fibers of the rat. L-Lactate (20 mM) significantly reduced maximum Ca(2+)-activated force by 4 +/- 0.5% (n = 5, P < 0.05) and 5 +/- 0.4% (n = 6, P < 0.05) for EDL and soleus, respectively. The Ca(2+) sensitivity was also significantly decreased by 0.06 +/- 0. 002 (n = 5, P < 0.05) and 0.13 +/- 0.01 (n = 6, P < 0.001) pCa units, respectively. Exposure to L-lactate (20 mM) for 30 s reduced depolarization-induced force responses by ChCl substitution by 7 +/- 3% (n = 17, P < 0.05). This inhibition was not obviously affected by the presence of the lactate transport blocker quercetin (10 microM), or the chloride channel blocker anthracene-9-carboxylic acid (100 microM). L-Lactate (20 mM) increased passive Ca(2+) leak from the SR in EDL fibers (the integral of the response to caffeine was reduced by 16 +/- 5%, n = 9, P < 0.05) with no apparent effect in soleus fibers (100 +/- 2%, n = 3). These results indicate that the L-lactate ion per se has negligible effects on either voltage-dependent Ca(2+) release or SR Ca(2+) handling and exerts only a modest inhibitory effect on muscle contractility at the level of the contractile proteins.