As cerium oxide nanoparticles (nCeO2) continue to infiltrate aquatic environments, the resulting health risks to exposed aquatic organisms are becoming evident. Cytochrome P450 (CYP) enzymes are integral to the detoxification processes in these species. Herein, we conducted a genomic analysis of CYPs in Daphnia magna, encompassing phylogenetic relationships, gene structure, and chromosomal localization. We identified twenty-six CYPs in D. magna, categorizing them into four clans and seven families, distributed across six chromosomes and one unanchored scaffold. The encoded CYP proteins varied in length from 99 to 585 amino acids, with molecular weights ranging from 11.6 kDa to 66.4 kDa. A quantitative real-time PCR analysis demonstrated a significant upregulation of CYP4C1.4, CYP4C1.5, CYP4C1.6, CYP4c3.3, and CYP4c3.6 in D. magna exposed to 150 mg/L nCeO2 for 24 h. The transcript levels of CYP4C1.3, CYP18a1, CYP4C1.1, and CYP4c3.9 were notably downregulated in D. magna exposed to 10 mg/L nCeO2 for 48 h. A further transcriptomic analysis identified differential expression patterns of eight CYP genes, including CYP4C1.3, in response to nCeO2 exposure. The differential regulation observed across most of the 26 CYPs highlights their potential role in xenobiotic detoxification in D. magna, thereby enhancing our understanding of CYP-mediated toxicological responses to metal nanoparticles in aquatic invertebrates.