alpha 2-Adrenoceptors modulating the release of dopamine were identified and characterized in slices of the head of the rabbit caudate nucleus. Release of endogenous dopamine was measured by fast cyclic voltammetry as the increase in the extracellular concentration of dopamine elicited by electrical stimulation. The electrochemical signal was identified as dopamine by means of the oxidation potential, the voltammogram and the fact that the signal was not changed by desipramine, which inhibits the high affinity uptake of noradrenaline, but was greatly increased by nomifensine, which in addition inhibits the high affinity uptake of dopamine. Stimulation by 6 pulses/100 Hz increased the extracellular concentration of dopamine by about 85 nM. The selective alpha 2-adrenoceptor agonist 5-bromo-6-(2-imidazolin-2-ylamino)-quinoxaline (UK 14,304) reduced this release with an EC50 of 173 nM and by maximally 75%. The alpha 2-adrenoceptor agonists clonidine and oxymetazoline only tended to cause a decrease. Six drugs, including oxymetazoline, were tested as antagonists against UK 14,304. Their order of antagonist potency (pKD values in brackets) was rauwolscine (8.0) > oxymetazoline (7.5) > 2-(2,6-dimethoxyphenoxyethyl)aminomethyl-1,4-benzodioxane (WB 4101; 7.3) > phentolamine (7.1) > corynanthine (5.1) approximately prazosin (<6). Given alone, the antagonists did not change the release of dopamine elicited by 6 pulses/100 Hz, and the same was true for the dopamine receptor antagonist sulpiride. When caudate slices were stimulated by 10 pulses/1 Hz, sulpiride increased the release of dopamine. Desipramine and rauwolscine, in contrast, again caused no change. It is concluded that dopaminergic axons in the rabbit caudate nucleus possess release-inhibiting alpha 2-adrenoceptors.2+ off