Experiments indicate that particle clusters that form in fluidized-bed risers can enhance gas-phase velocity fluctuations. Direct numerical simulations (DNS) of turbulent flow past uniform and clustered configurations of fixed particle assemblies at the same solid volume fraction are performed to gain insight into particle clustering effects on gas-phase turbulence, and to guide model development.The DNS approach is based on a discrete-time, direct-forcing immersed boundary method (IBM) that imposes no-slip and no-penetration boundary conditions on each particle's surface. Results are reported for mean flow Reynolds number Re p = 50 and the ratio of the particle diameter d p to Kolmogorov scale is 5.5. The DNS confirm experimental observations that the clustered configurations enhance the level of fluid-phase turbulent kinetic energy (TKE) more than the uniform configurations, and this increase is found to arise from a lower dissipation rate in the clustered particle configuration. The simulations also reveal that the particle-fluid interaction results in significantly anisotropic fluid-phase turbulence, the source of which is traced to the anisotropic nature of the interphase TKE transfer and dissipation tensors. This study indicates that when particles are larger than the Kolmogorov scale (d p > η), modeling the fluid-phase TKE alone may not be adequate to capture the underlying physics in multiphase turbulence because the Reynolds stress is anisotropic. It also shows that multiphase turbulence models should consider the effect of particle clustering in the dissipation model.