Here, we built Ru‐decorated Pt/C nanoparticles with different coverage degrees (θRu) by wall‐jet configuration for the first time, and we investigated their catalytic properties towards glycerol electrooxidation in acidic medium. Moreover, we used the most active catalysts as the anode in electrolysis to produce carbonyl compounds. The use of an electrochemical cell in wall‐jet configuration allows for the controlling of electrodeposition through easily handling parameters; namely, the θRu is controlled by changing the concentration of the metallic precursor, speed, and volume of injection onto a Pt/C‐modified glassy carbon electrode under applied potential. Excess of Ru on a Pt surface inhibits glycerol dissociative adsorption, which limits further electrooxidation; whereas low θRu do not provide surface oxygen species to the anodic reaction. Hence, intermediates θRu reveal active catalysts – namely, θRu=0.42 shifts the onset potential 170 mV towards lower values and increases 1.65‐fold the current density at 0.5 V. The stability of this catalyst is also enhanced by maintaining a more constant current density during successive potential cycles in the presence of glycerol and by avoiding Ru leaching from the surface. The electrolysis on Ru‐decorated Pt/C is shown to lead the reaction towards formic acid (‘high oxidation state’), decreasing the amounts of glyceradehyde, glycolic acid, and dihydroxyacetone, as a result of the improved catalytic properties.