Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This paper presents the experimental results and deep discussion on the simultaneous effect of fly ash (FA) and synthetic nano-SiO2 on the main strength parameters and fracture toughness expressed by critical stress intensity factor, K Ic S of a new concrete based on ternary blended cements (TC). Four series of concretes were made, one of which was the control concrete and the remaining three were TC. The effect of constant content of 5% nano-SiO2 and various FA contents such, i.e.: 0, 15 and 25% wt. as partial replacement of cement were studied. During the studies the DIC technique was applied to determine the deformation of the concrete beams in the propagation area of the modelled initial crack. Based on the studies it was found that the addition of 5% nano-SiO2 without FA increases the strength and fracture toughness of concrete by approx. 20%. On the other hand supplementing the composition of the binder with 5% nano-SiO2 in combination with the 15% FA additive causes an increase in all mechanical parameters by another approx. 20%. However, an increase in the FA content in the concrete mix by another 10% causes a smaller increase in the all analysed factors, i.e. by approx. 10% compared to composite with the addition of nano-SiO2 modifier only. In addition, based on the studies using DIC technique it was observed that in concrete including only nano-SiO2 the crack paths were almost perfectly rectilinear in shape, with a significant width of opening. However, in concrete containing 5% nano-SiO2 + 15% FA the crack paths were curvilinear with characteristic additional microcracks in the vicinity of the main crack, whereas in concrete with the addition of 5% nano-SiO2 + 25% FA the crack paths were very strongly curved and had pronounced branching and numerous additional microcracks in the vicinity of the main crack. From an application point of view, concretes involving FA and nano-SiO2 can be used in the execution of specific types of concrete and reinforced concrete structures that require a material with reduced brittleness and at the same time increased fracture toughness.
This paper presents the experimental results and deep discussion on the simultaneous effect of fly ash (FA) and synthetic nano-SiO2 on the main strength parameters and fracture toughness expressed by critical stress intensity factor, K Ic S of a new concrete based on ternary blended cements (TC). Four series of concretes were made, one of which was the control concrete and the remaining three were TC. The effect of constant content of 5% nano-SiO2 and various FA contents such, i.e.: 0, 15 and 25% wt. as partial replacement of cement were studied. During the studies the DIC technique was applied to determine the deformation of the concrete beams in the propagation area of the modelled initial crack. Based on the studies it was found that the addition of 5% nano-SiO2 without FA increases the strength and fracture toughness of concrete by approx. 20%. On the other hand supplementing the composition of the binder with 5% nano-SiO2 in combination with the 15% FA additive causes an increase in all mechanical parameters by another approx. 20%. However, an increase in the FA content in the concrete mix by another 10% causes a smaller increase in the all analysed factors, i.e. by approx. 10% compared to composite with the addition of nano-SiO2 modifier only. In addition, based on the studies using DIC technique it was observed that in concrete including only nano-SiO2 the crack paths were almost perfectly rectilinear in shape, with a significant width of opening. However, in concrete containing 5% nano-SiO2 + 15% FA the crack paths were curvilinear with characteristic additional microcracks in the vicinity of the main crack, whereas in concrete with the addition of 5% nano-SiO2 + 25% FA the crack paths were very strongly curved and had pronounced branching and numerous additional microcracks in the vicinity of the main crack. From an application point of view, concretes involving FA and nano-SiO2 can be used in the execution of specific types of concrete and reinforced concrete structures that require a material with reduced brittleness and at the same time increased fracture toughness.
This study presents test results and deep discussion regarding measurements of the fracture toughness of new concrete composites based on ternary blended cements (TCs). A composition of the most commonly used mineral additive (i.e., fly ash (FA)) in combination with nano-silica (NS) has been proposed as a partial replacement of the ordinary Portland cement (OPC) binder. The novelty of this article is related to the fact that ordinary concretes with FA + NS additives are most often used in construction practice, and there is a decided lack of fracture toughness test results concerning these materials. Therefore, in order to fill this gap in the literature, an extensive evaluation of the fracture mechanic parameters of TC was carried out. Four series of concretes were created, one of which was the reference concrete (REF), and the remaining three were TCs. The effect of a constant content of 5% NS and various FA contents, such as 0, 15%, and 25% wt., as a partial replacement of cement was studied. The parameters of the linear and nonlinear fracture mechanics were analyzed in this study (i.e., the critical stress intensity factor (KIcS), critical crack tip opening displacement (CTODc), and critical unit work of failure (JIc)). In addition, the main mechanical parameters (i.e., the compressive strength (fcm) and splitting tensile strength (fctm)) were evaluated. Based on the studies, it was found that the addition of 5% NS without FA increased the strength and fracture parameters of the concrete by approximately 20%. On the other hand, supplementing the composition of the binder with 5% NS in combination with the 15% FA additive caused an increase in all mechanical parameters by approximately another 20%. However, an increase in the FA content in the concrete mix of another 10% caused a smaller increase in all analyzed factors (i.e., by approximately 10%) compared with a composite with the addition of the NS modifier only. In addition, from an ecological point of view, by utilizing fine waste FA particles combined with extremely fine particles of NS to produce ordinary concretes, the demand for OPC can be reduced, thereby lowering CO2 emissions. Hence, the findings of this research hold practical importance for the future application of such materials in the development of green concretes.
In the whole world, construction activities are happening rapidly as a result of the population increase and also due to the lifestyle of people in the 20th century, intensifying the pressure on resources needed for construction. It also causes bad effects on the environment, such as the carbon footprint associated with cement production and the waste management of emission waste like fly ash in thermal power plants. Counteracting and stabilizing the adverse environmental consequences, this study adopts an experimental approach to utilize thermal power plant waste Class C Fly ash (pozzolanic), locally available red soil, and stone dust, along with geopolymer precursors, to manufacture bricks, which are the most demanding material for infill masonry work. The mechanical, durability, and microstructural characterization of the bricks were studied for various mix proportions, along with various concentrations of geopolymer precursors, cured at elevated temperatures and ambient curing. An optimum methodology was obtained to develop a red soil-based geopolymer brick.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.