Na+/H+ exchanger isoform 1 (NHE1) has been reported to be hyperactive in 4.1R-null erythrocytes (Rivera A et al., Am J Physiol Cell Physiol, 291, C880–886, 2006), supporting a functional interaction between NHE1 and 4.1R. Here we demonstrate that 4.1R binds directly to the cytoplasmic domain of NHE1 (NHE1cd) through the interaction of an EED motif in 4.1R FERM (Four.one/Ezrin/Radixin/Moesin) domain with two clusters of basic amino acids, K519R and R556FNKKYVKK, in NHE1cd, previously shown to mediate phosphatidylinositol 4,5-bisphosphate (PIP2) binding (Aharonovitz et al. J. Cell. Biol., 150, 213–224, 2000). The affinity of this interaction (Kd=100–200nM) is reduced in hypertonic and acidic conditions, demonstrating that this interaction is of electrostatic nature. The binding affinity is also reduced upon binding of Ca2+-saturated calmodulin (Ca2+/CaM) to 4.1R FERM domain. We propose that 4.1R regulates NHE1 activity through a direct protein-protein interaction that can be modulated by intracellular pH and Na+ and Ca2+ concentrations.