Two experiments were conducted to evaluate the effect of different corn milling methods for high-moisture and dry corn on finishing cattle performance, carcass traits, and nutrient digestion. In experiment 1, steers (N = 600 [60 pens]; initial body weight [BW] = 402 ± 17 kg) were fed for 134 d to evaluate the effect of milling method and corn type on performance and carcass characteristics. Treatments were evaluated as a 2 × 3 factorial design with factors being milling method (Automatic Ag roller mill [ROLL] or hammer mill [HAMMER]) and corn type (high-moisture [HMC], dry [DC], or 50:50 blend of HMC and DC [BLEND]). There were no milling method × corn type interactions for final BW, gain (ADG), or dry matter intake (DMI; P ≥ 0.32), but there tended to be an interaction for G:F (P = 0.09). Cattle fed ROLL HMC had 4.7% greater gain:feed (G:F; P ≤ 0.01) with 55% lower fecal starch (P < 0.01) compared to HAMMER HMC, whereas processing did not impact (P = 0.74) G:F in DC diets. There were no further effects (P ≥ 0.14) on performance or carcass traits regardless of milling method or corn type. In experiment 2, seven ruminally fistulated steers were utilized in a 4 × 7 incomplete Latin rectangle to evaluate the effects of DC or HMC processed with either ROLL or HAMMER (2 × 2 factorial treatment design) on nutrient digestion. Feeding HMC decreased the amount of excreted dry matter (DM) and organic matter (OM; P ≤ 0.01) regardless of mill type, but there was a tendency (P ≤ 0.13) for an interaction between corn type and mill type for DM and OM digestibility. There was no difference between milling treatments fed as HMC (P ≥ 0.69), but the HAMMER DC diet was more digestible than the ROLL DC (P = 0.05). As expected, HMC-based diets had greater (P < 0.01) starch digestibility compared to DC, but milling method had no impact on starch digestibility (P = 0.56). There were no differences (P = 0.56) in average ruminal pH, but HMC diets had greater variance (P = 0.04) and greater area less than pH 5.6 (P = 0.05) compared to DC based diets while milling method did not impact either (P > 0.33). Processing HMC with a roller mill improved G:F compared to processing with a hammer mill, but had little effect when corn was fed as dry corn or HMC:DC blend. Furthermore, feeding cattle HMC compared to DC increases nutrient digestibility, but milling method had little impact.