The current paper provides a comprehensive review of experimental studies on corrosion damaged reinforced concrete (RC) components, and the ability of current state-of-the-art numerical models to predict the residual capacity of these corroded RC components. The experimental studies on corroded RC components are classified into five different categories including: (i) beams in flexure, (ii) beams in shear, (iii) columns under pure axial compression, (iv) circular columns in flexure, and (v) rectangular columns in flexure. For each group, a summary of all the previous research are provided. Through the regression analyses, the experimental results of each abovementioned groups are used to examine the adverse effect of corrosion on ductility and, flexural, shear, and axial capacity loss of the corroded RC components. Finally, the observed results of the previous experimental studies are compared with the predicted values using the state-of-the-art numerical models currently available in the literature. The summarised experimental results show that corrosion has much more adverse impact on ductility of the RC columns than strength. However, the effect of corrosion on ductility and strength reduction of RC beams is the same. Moreover, results of cross-sectional moment-curvature analyses using the state-of-the-art corrosion damage models show a good correlation between the predicted residual flexural capacity and observed experimental results. Finally, the existing shortcomings in the literature and open issues to be addressed in the future research are discussed, and some recommendations are provided.