Lead halide perovskites are a remarkable class of materials that have emerged over the past decade as being suitable for application in a broad range of devices, such as solar cells, light‐emitting diodes, lasers, transistors, and memory devices. While they are often solution‐processed semiconductors deposited at low temperatures, perovskites exhibit properties one would only expect from highly pure inorganic crystals that are grown at high temperatures. This unique phenomenon has resulted in fast‐paced progress toward record device performance. Unfortunately, the basic science behind the remarkable nature of these materials is still not well understood. This review assesses the current understanding of the photoluminescence properties of metal halide perovskite materials and highlights key areas that require further research. Furthermore, the need to standardize the methods for characterization of PL in order to improve comparability, reliability, and reproducibility of results is emphasized.