Non-invasively monitoring tumors during their growth and disease progression could provide invaluable diagnostic information and improve our understanding of tumors and their microenvironment, especially blood vessels. Hyperspectral imaging (HSI) with integrated three-dimensional optical profilometry (3D OP) provides the necessary tools for non-invasive and contactless disease diagnosis by utilizing intrinsic tissue contrast of incoming visible and near-infrared light. Therefore, information about tissue, morphology, and pathology could be extracted from the images. In this study, we monitored six female BALB/c mice with a subcutaneously grown CT26 murine colon carcinoma over a period of 14 days, starting on the day of tumor cells injection. Blood vessels in the tumor and its surrounding healthy tissue were segmented from hyperspectral images, and physiological properties such as blood volume fraction and tissue oxygenation were extracted using the inverse adding-doubling (IAD) algorithm. The results indicate that oxygenation in blood vessels within the CT26 tumors and surrounding tissue peaks eight days after tumor cell injection at 35 %, a two-fold increase from the beginning of the study, and then gradually decreases to around 25 % 14 days after injection.