2017
DOI: 10.1016/j.mechmat.2017.07.014
|View full text |Cite
|
Sign up to set email alerts
|

Effect of cyclic plastic strain and flow stress on low cycle fatigue life of 316L(N) stainless steel

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
4
0
2

Year Published

2018
2018
2023
2023

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 14 publications
(6 citation statements)
references
References 28 publications
0
4
0
2
Order By: Relevance
“…The cyclic plastic behavior of 316L steel induced by the hysteresis loop has also been evaluated by developing a damage evolution model based on the flow stress. [11] The proposed damage model could mimic the life cycle curve behavior obtained from experimental tests well.…”
Section: Introductionmentioning
confidence: 90%
See 1 more Smart Citation
“…The cyclic plastic behavior of 316L steel induced by the hysteresis loop has also been evaluated by developing a damage evolution model based on the flow stress. [11] The proposed damage model could mimic the life cycle curve behavior obtained from experimental tests well.…”
Section: Introductionmentioning
confidence: 90%
“…The ratcheting failure of 316L steel under the low-cycle fatigue tests has been studied numerically and experimentally. [11] In their work, the authors developed a numerical model based on Chaboche kinematic hardening equation and calibrated its parameters based on hysteresis and post-stabilized monotonic stress plastic-strain curves from experimental tests. They identified the Chaboche parameters by adopting two optimization approaches using particle swarm optimization and Genetic algorithms.…”
Section: Introductionmentioning
confidence: 99%
“…Primero, como se mencionó en los apartados anteriores, el material para determinar este caso de aplicación es hierro dúctil grado 50 ASTM A572 el cual su límite de fluencia es fy= 50,000 psi y presenta un esfuerzo ultimo de resistencia de = 65,300 psi. De aquí, la determinación del límite de resistencia experimental ´ se da a través de la siguiente formula: ´= 0.5 (18) Debido al proceso de fabricación y montaje de los elementos estructurales, este límite de resistencia debe de ser modificado por factores de concentración de esfuerzos de la siguiente manera:…”
Section: Análisis De Resistencia Del Materialsunclassified
“…Sin ISSN: 2594-1925 embargo, Kim (2011) y Huang (2017) determinan los esfuerzos normales basado en pruebas experimentales en elementos estructurales, con el objetivo de determinar parámetros de experimentales de fatiga de los estos elementos. Actualmente, algunas metodologías probabilísticas de análisis de esfuerzo-resistencia parten del hecho de la existencia de este esfuerzo normal sin especificar el modo de determinación del mismo [1][2][3], [17][18][19].…”
Section: Introductionunclassified
“…Sun et al [ 12 ] carried out the fatigue test of the nickel alloy GH4169 at 650 °C under the combination of proportional and non-proportional tension and torsion loadings, thereby establishing the damage model which could be simplified to the uniaxial Manson–Coffin equation. Xu et al [ 13 ] proposed a damage evolution model for low-cycle fatigue considering that the fatigue damage accumulation is mainly caused by cyclic plastic strain. Martins et al [ 14 ] studied the low-cycle fatigue life of bainitic steels based on the cumulative strain energy density and developed a new predictive model to estimate the fatigue life.…”
Section: Introductionmentioning
confidence: 99%