Helicobacter pylori (H. pylori) infection is common and can result in gastric and duodenal ulcers, and in some cases, gastric lymphoma and cancer. Omeprazole (OMP)-in combination with clarithromycin (CLR), amoxicillin (AMX), tinidazole (TND), or metronidazole (MET)-is used in double or triple combination therapy for eradication of H. pylori. However, the roles of the drugs other than OMP are not clearly understood. Therefore, in the present study, we aimed to investigate any effects of these drugs on OMP metabolism by wild-type CYP2C19 using spectroscopy and enzyme kinetics. The dissociation constants (K d) for CYP2C19 with OMP, CLR, AMX, TND, and MET were 8.6, 126, 156, 174, and 249 µM, respectively. The intrinsic clearance of OMP was determined to be 355 mL/min/µmol of CYP2C19. Metabolism of OMP was significantly inhibited by 69, 66, 28, and 40% in the presence of CLR, TND, AMX, and MET, respectively. Moreover, the combination of CLR and TND resulted in 76% inhibition of OMP metabolism, while the combination of AMX and MET resulted in 48% inhibition of OMP metabolism. Both combinations of drugs not only have antibacterial effects, but also enhance the effect of OMP by inhibiting its metabolism by CYP2C19. These results indicate that drug-drug interactions of co-administered drugs can cause complex effects, providing a basis for OMP dose adjustment when used in combination therapy for H. pylori eradication.