FeCuMoTiV high-entropy alloy coatings were prepared on the surface of aluminum matrix composites using the laser cladding technique. The physical phase composition of the coating, the hardness of each physical phase, and the friction and wear behavior of the coating were studied in detail. The results show that: From the XRD and TEM analysis, the coating’s physical phases, BCC1(MoV) and BCC2(TiFe), are coherent. From the EBSD analysis, the grains of the coating have no obvious selective orientation, and the average equivalent circle diameter is 26.44 μm. Nanomechanical tests showed that the average hardness of the BCC1 phase in the coating was 7831.2 N mm−2, which provided the coating with excellent abrasion resistance. The average coefficient of friction of the coating showed a tendency to decrease and then increase with the increase of time, and it floated in the range of 0.3 ± 0.05. The coating forms a structure containing Fe2O3, MoO3, CuO, and TiO2 mixed oxide ‘glaze layer’ on the wear surface, which provides good lubrication. Combined with SEM analysis, the wear mechanism of the coating is a mixture of abrasive wear, oxidative wear, adhesive wear, and fatigue wear.