The lightweight Fe–Mn–Al–C steels have drawn considerable attention from the literature due to their outstanding combination of high ductility and specific strength. Although the mechanical behavior of such steels has been extensively studied, the effect of Al when no C and Si are added has not been investigated in detail. For this reason, the main objective of this work was to study the microstructural evolution and mechanical behavior of carbon and silicon-free high-Mn steels with different aluminum contents. Alloys with 0, 2.5, and 5 wt. % Al were processed by spray forming to ensure high homogeneity and a fully austenitic microstructure. Cold rolling and annealing were performed to obtain a fine grain-sized material. The mechanical properties were similar regardless of the Al content, especially the work hardening rate. Deformation twinning and strain-induced phase transformation were not observed for any of the compositions. Additionally, a dislocation cell-like structure was observed for all of the alloys indicating that the Al additions did not change considerably the dislocation behavior, even though it considerably changed the estimated Stacking Fault Energy (SFE) value for all the alloys studied in this work.