The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction. Thus, a theoretical basis for process optimization and reactor design can be established by analyzing the solubility of hydrogen in liquefaction solvents. Experimental studies of hydrogen solubility in liquefaction solvents are challenging due to harsh reaction conditions and complex solvent compositions. In this study, the composition and content of liquefied solvents were analyzed. As model compounds, hexadecane, toluene, naphthalene, tetrahydronaphthalene, and phenanthrene were chosen to represent the liquefied solvents in chain alkanes and monocyclic, bicyclic, and tricyclic aromatic hydrocarbons. The solubility of hydrogen X (mol/mol) in pure solvent components and mixed solvents (alkanes and aromatics mixed in proportion to the chain alkanes + bicyclic aromatic hydrocarbons, bicyclic saturated aromatic hydrocarbons + bicyclic aromatic hydrocarbons, and bicyclic aromatic hydrocarbons + compounds containing heteroatoms composed of mixed components) are determined using Aspen simulation at temperature and pressure conditions of 373–523 K and 2–10 MPa. The results demonstrated that at high temperatures and pressures, the solubility of hydrogen in the solvent increases with the increase in temperature and pressure, with the pressure having a greater impact. Furthermore, the results revealed that hydrogen is more soluble in straight-chain alkanes than in other solvents, and the solubility of eicosanoids reaches a maximum of 0.296. The hydrogen solubility in aromatic ring compounds decreased gradually with an increase in the aromatic ring number. The influence of chain alkanes on the solubility of hydrogen predominates in a mixture of solvents with different mixing ratios of chain alkanes and aromatic hydrocarbons. The solubility of hydrogen in mixed aromatic solvents is less than that in the corresponding single solvents. Hydrogen is less soluble in solvent compounds containing heteroatoms than in compounds without heteroatoms.