Anemia is the most common hematologic complication in end-stage renal disease (ESRD). It is ascribed to decreased erythropoietin production, shortened red blood cell (RBC) lifespan, and inflammation. Uremic toxins severely affect RBC lifespan; however, the implicated molecular pathways are poorly understood. Moreover, current management of anemia in ESRD is controversial due to the "anemia paradox" phenomenon, which underlines the need for a more individualized approach to therapy. RBCs imprint the adverse effects of uremic, inflammatory, and oxidative stresses in a context of structural and functional deterioration that is associated with RBC removal signaling and morbidity risk. RBCs circulate in hostile plasma by raising elegant homeostatic defenses. Variability in primary defect, co-morbidity, and therapeutic approaches add complexity to the pathophysiological background of the anemic ESRD patient. Several blood components have been suggested as biomarkers of anemia-related morbidity and mortality risk in ESRD. However, a holistic view of blood cell and plasma modifications through integrated omics approaches and high-throughput studies might assist the development of new diagnostic tests and therapies that will target the underlying pathophysiologic processes of ESRD anemia.