Application of herbal immune-stimulants for modulation of fish growth and immune response has received great interest during the past decades. With several pharmacological properties, Doum palm, Hyphaene thebaica (Mart.) is known to be a beneficial medicinal plant. The objective of this study was to investigate the effects of the dietary addition of doum palm fruit powder (DPFP) on growth performance, non-specific immune response, and antioxidant parameters of African catfish, Clarias gariepinus (B.). A total of 120 fish (average initial weight 60.50 ± 0.04 g) were randomly allocated to four groups (three replicates/group, 10 fish/aquarium); a basal diet without DPFP supplementation was used as a control, and three other diets were prepared by supplementing 5, 10, or 15 g kg−1 DPFP for a ten-week feeding period. Following ten weeks of feeding, the fish were challenged with Aeromonas hydrophila (as an immune challenge test), and mortalities were recorded. In comparison to the control diet, dietary DPFP significantly improved growth parameters, including final body weight, body weight gain (WG), specific growth rate (SGR), feed conversion ratio (FCR), and protein efficiency ratio (PER), along with an increase in the content of dry matter of the whole body, in a concentration-dependent manner. Moreover, the heights of intestinal villi, numbers of goblet cells, and intraepithelial lymphocytes (IEL) exhibited marked escalation in all parts of the intestine by increasing the level of DPFP, except for numbers of IEL in the proximal part. The decline in serum glucose, cholesterol, and triglyceride levels was prominent in DPFP10 and DPFP15 groups respective to the DPFP0 group. Furthermore, DPFP boosted the hepatic level of catalase (CAT) in the fish, in a dose-dependent manner; meanwhile, the activity of superoxide dismutase (SOD) and reduced glutathione (GSH) content were also augmented in DPFP10 and DPFP15 groups respective to the DPFP0 group. Dietary DPFP (DPFP15 followed by DPFP10 then DPFP5) led to a pronounced enhancement in the innate immune response (phagocytic percent and index, lysozyme activity, nitric oxide (NO) production, and sialoglycans, namely α 2,3-sialyltransferase and α 2,6-sialyltransferase content); however, the myeloperoxidase (MPO) activity was reduced. Significantly higher relative percentage survival (RPS, 88.56%) of the fish, following the A. hydrophila challenge, was observed for the DPFP15 group. We can suggest that DPFP can beneficially influence fish growth, intestinal histomorphology, hepatic levels of catalase (CAT), superoxide dismutase (SOD) activity and glutathione (GSH) content, immune response, and disease resistance against A. hydrophila challenge.