2-Amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP), a compound found in cooked meat, is a mammary gland carcinogen in rats. Comparative genomic hybridization of PhIP-induced rat mammary gland carcinomas revealed loss in the centromeric region of 2q, a region known to carry the mammary carcinoma susceptibility 1 (Mcs1) gene and several other genes relevant to carcinogenesis. Allelic imbalance, specifically microsatellite instability and loss of heterozygosity, was examined in mammary gland carcinomas induced by PhIP in Sprague-Dawley (SD) Â Wistar Furth F1 hybrid rats. In a polymerase chain reaction (PCR)-based assay with 34 microsatellite markers coinciding to 2q11-2q16, nine markers revealed allelic imbalance. The frequency of imbalance in the tumors varied from 10 to 100% depending on the specific marker. However, none of the markers coinciding with the Mcs1 gene locus showed allelic imbalance, suggesting that alterations at this locus were not associated with PhIPinduced rat mammary gland cancer. The expression of several genes physically mapped to 2q11-2q16 and potentially involved in carcinogenesis including Ccnb (cyclin B1), Ccnh (cyclin H), Rasa (Ras GAP), Rasgrf2, Pi3kr1 (p85a), and Il6st (gp130) was also examined by quantitative real-time PCR and immunohistochemistry (IHC) across a large bank of PhIP-induced SD rat mammary gland carcinomas. By quantitative real-time PCR, the mRNA expression of Rasa, Pi3kr1, Ccnh, and Il6st in carcinomas was, respectively, 22-, 20-, three-and threefold higher in carcinomas than in control mammary gland tissues (Po0.05, Student's t-test). A statistically sixfold lower expression of Rasgrf 2 was detected in carcinomas whereas no significant change in Ccnb1 expression was observed. The findings from quantitative real-time PCR were confirmed by IHC for each gene. In addition, the proliferation index in mammary gland carcinomas as assessed by PCNA was found to correlate with the overexpression of Cyclin H by IHC analysis (Po0.05, Spearman Rank Order Correlation). The findings from the current study implicate molecular alterations in the proximal region of 2q in PhIP-induced rat mammary gland carcinomas.