Many cool-season grass species have evolved with asexual, nonsymptomatic fungal endophytes of the genus <em>Epichloë</em> (formerly <em>Neotyphodium</em>) of the family Clavicipitaceae. These associations range from parasitic to mutualistic and have dramatic effects on grass host chemistry, increasing resistance to abiotic (drought, soil mineral imbalance) and biotic (vertebrate and invertebrate herbivory, nematodes, plant pathogens, plant competition) stresses. Native endophyte strains produce a range of bioprotective alkaloid and other nonalkaloid secondary compounds, several of them known to have detrimental effects on grazing animals. In the past two decades, epichloid endophyte strains have been selected with marginal or no capacity of producing ergot and/or lolitrem alkaloids. These novel endophyte strains have been introduced to several grass cultivars with the idea to increase grass host resistance to abiotic stresses without hindering grazing livestock, and abiotic stresses to ensure high competitive ability of symbiotic grass cultivars. In this presentation, we discuss mechanisms underlying the competitiveness of epichloid endophyte/grass associations and consequences of endophyte infection for grassland ecosystem functions.