Maternal hypothyroxinemia can induce neurodevelopmental impairments in the developing fetus. We here review recent studies on the epidemiology and molecular mechanisms associated with this important public health issue. In 2011, the American Thyroid Association defined maternal hypothyroxinemia as low serum free thyroxine (FT4) levels (<5th or <10th percentile) existing in conjunction with normal serum free triiodothyronine (FT3) or thyroid stimulating hormone (TSH) levels during pregnancy. Compared to clinical or subclinical hypothyroidism, hypothyroxinemia is more commonly found in pregnant women. Hypothyroxinemia usually ensues in response to several factors, such as mild iodine deficiency, environmental endocrine disrupters, or certain thyroid diseases. Unequivocal evidence demonstrates that maternal hypothyroxinemia leads to negative effects on fetal brain development, increasing the risks for cognitive deficits and poor psychomotor development in resulting progeny. In support of this, rodent models provide direct evidence of neurodevelopmental damage induced by maternal hypothyroxinemia, including dendritic and axonal growth limitation, neural abnormal location, and synaptic function alteration. The neurodevelopmental impairments induced by hypothyroxinemia suggest an independent role of T4. Increasing evidence indicates that adequate thyroxine is required for the mothers in order to protect against the abnormal brain development in their progeny.