2018
DOI: 10.1360/n972018-00960
|View full text |Cite
|
Sign up to set email alerts
|

Effect of different surface functional groups of graphene on oxidative stress in <italic>Daphnia magna</italic>

Abstract: A review of the toxicity of nanoparticles to Daphnia magna Chinese Science Bulletin 62, 2734 (2017); δ 13 C and water-use efficiency indicated by δ 13 C of different plant functional groups on Changbai Mountains, Northeast China Chinese Science Bulletin 54, 1759 (2009); Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

2021
2021
2023
2023

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 13 publications
0
1
0
1
Order By: Relevance
“…GO and GO quantum dots (GOQDs)) have been detailed (Yan et al, 2022). In addition, tests performed using the crustacean Daphnia magna with GO (single layer, 200-300 nm) report modest acute toxicity with LC 50 72h of 45.4 mg/L (Lv et al, 2018) and also distinct effects have been reported for different functionalised GO nanoforms in this test species (Yao et al, 2018).…”
Section: Aquatic Toxicity Of 2d Graphene Materialsmentioning
confidence: 98%
“…GO and GO quantum dots (GOQDs)) have been detailed (Yan et al, 2022). In addition, tests performed using the crustacean Daphnia magna with GO (single layer, 200-300 nm) report modest acute toxicity with LC 50 72h of 45.4 mg/L (Lv et al, 2018) and also distinct effects have been reported for different functionalised GO nanoforms in this test species (Yao et al, 2018).…”
Section: Aquatic Toxicity Of 2d Graphene Materialsmentioning
confidence: 98%
“…纳米材料是指至少在一维尺度上介于1~100 nm的材料 [1,2] 。纳米材料得益于自身优异的理 化性质,如量子尺寸效应,被广泛应用于各个领域 [3~6] 。预计2025年,纳米材料的全球市场价 值将达到118亿美元 [7] 。其中,纳米ZnO因其高稳定性、抗菌性和光催化性,被应用于电子产 品、化妆品、涂料、光催化剂、抗菌剂、陶瓷等行业 [8~10] 。纳米ZnO的大量生产和使用使其不 可避免地被释放到水环境中,对水生生物产生潜在的危害 [11~14] 。 近年来,一些研究通过将水生生物暴露于给定剂量的纳米ZnO来评价其急性毒性 [15~18] 。 然而纳米ZnO在水环境中的团聚、吸附等行为,可能降低其生物利用度 [6,19~21] ,导致给定暴露 剂量不能准确反映纳米ZnO在暴露介质中的实际浓度,从而影响其毒性评估。研究表明,水 环境中的纳米ZnO, 只有被生物体累积的部分(即内暴露剂量)才是对水生生物产生毒性效应的 关键 [22,23] 。Zhang等人 [24] 发现,纳米ZnO在细胞内的累积量与微藻的生长抑制率具有线性相关 性。因此,研究纳米ZnO的生物累积对评价其水生毒性具有重要意义。 氧化应激是纳米ZnO对生物体造成损伤的重要毒性机制。当生物体暴露于纳米ZnO时, 其可诱导生物体产生活性氧物种(Reactive oxygen species,ROS),破坏抗氧化平衡,造成氧化 损伤 [25~29] 。在正常的生理条件下,生物体内的ROS是有氧代谢的产物。生物体内抗氧化防御 系统维持着ROS的动态平衡。 当体内ROS水平超过抗氧化防御系统的清除能力时, 过量的ROS 可能造成氧化损伤 [30~32] 。研究表明,当大型溞暴露于纳米ZnO时,其可诱导大型溞体内的氧 化应激生物标志物显著改变,并造成氧化损伤 [25] 。 纳米ZnO的粒径也能影响其毒性效应 [13,33~35] 。研究表明,随着ZnO的粒径增大(100和200 nm),海藻受到的生长抑制减弱 [35] 。可能原因是小粒径纳米ZnO的比表面积相对较大,表面反 应活性较强。然而,Samei等人 [13] 研究了不同粒径纳米ZnO(20和40 nm)对微藻的生长抑制,发 现纳米ZnO的粒径大小不影响其毒性。虽然目前的研究考虑了纳米ZnO在生物体内产生氧化 应激的机制,但粒径大小对纳米ZnO的生物累积及诱导氧化应激的影响尚不清楚。 大型溞作为水生食物链中的重要环节,既能吞食初级生产者(例如藻类),又能被次级消 费者摄取,对于水生食物链的物质平衡与能量转化起着重要作用 [23] 的TEM图像随机选取300个颗粒记录其粒径,用于计算纳米ZnO的原始粒径平均值 [36] 。使用马 尔文纳米粒度仪(Malvern, Nano-ZS90, UK)测定暴露溶液(1 mg/L)中纳米ZnO的水动力学直径, 标志物的测定,包括T-SOD、CAT、GSH和MDA [31] 。抗氧化酶(T-SOD、CAT)及抗氧化剂(GSH) 对ROS的清除起着重要的作用。MDA是脂质过氧化物产物,可用于评价生物体氧化损伤的程 度 [30] 面能,更容易发生团聚 [38] 。Shao和Wang [39] 通过研究不同粒径纳米Ag(15和60 nm)在人工河口 水中的团聚动力学,也发现较小粒径的纳米颗粒(Ag NPs,15 nm)更容易发生团聚。 stress biomarkers measurements demonstrated that the MDA concentrations per unit Zn accumulation in Daphnia magna for 90 nm ZnO were significantly higher than those for 30 and nm ZnO. The results indicated that the degree of oxidative damage in Daphnia magna induced by 90 nm ZnO was more serious than 30 and 50 nm ZnO treatments groups, which may be related to the fact that the hydrodynamic diameters of 90 nm ZnO were significantly smaller than those of 30 and 50 nm ZnO.…”
unclassified