2007
DOI: 10.1103/physrevb.75.144512
|View full text |Cite
|
Sign up to set email alerts
|

Effect of disorder on the superfluid transition in two-dimensional systems

Abstract: In recent experiments on thin 4 He films absorbed to rough surfaces Luhman and Hallock (Ref. 1) attempted to observe KT features of the superfluid-normal transition of this strongly disordered 2D bosonic system. It came as a surprise that while peak of dissipation was measured for a wide range of surface roughness there were no indications of the theoretically expected universal jump of the areal superfluid density for the strongly disordered samples. We test the hypothesis that this unusual behavior is a mani… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
2
0

Year Published

2008
2008
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 64 publications
0
2
0
Order By: Relevance
“…[1][2][3][4][5][6][7][8] The most accessible example of low dimensional Bose systems in nature is 4 He films adsorbed on porous materials or on flat surfaces. 2,4,[8][9][10][11][12] Other topical examples are Cooper pairs of electrons in thin-film superconductors, 13 Josephson junction arrays, 14 sodium atoms in optical and magnetic traps, 5,15 and spin polarized atomic hydrogen. 16 The order parameter used to characterize coherence properties of Bose systems is the one-body density matrix ͑OBDM͒; the Fourier transform of the atomic momentum distribution n͑k͒.…”
Section: Introductionmentioning
confidence: 99%
“…[1][2][3][4][5][6][7][8] The most accessible example of low dimensional Bose systems in nature is 4 He films adsorbed on porous materials or on flat surfaces. 2,4,[8][9][10][11][12] Other topical examples are Cooper pairs of electrons in thin-film superconductors, 13 Josephson junction arrays, 14 sodium atoms in optical and magnetic traps, 5,15 and spin polarized atomic hydrogen. 16 The order parameter used to characterize coherence properties of Bose systems is the one-body density matrix ͑OBDM͒; the Fourier transform of the atomic momentum distribution n͑k͒.…”
Section: Introductionmentioning
confidence: 99%
“…The interception \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} $1/{\mathrm{\Lambda }}( {{T}_{{\mathrm{BKT}}}} ) = \frac{{4\pi {\mu }_0}}{{{\mathrm{\Phi }}_0^2}}k{T}_{{\mathrm{BKT}}}$\end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\mu }_0$\end{document} is the vacuum permeability, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} ${{\mathrm{\Phi }}}_0$\end{document} the flux quantum and k the Boltzmann constant, corresponds to the BKT temperature \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} ${T}_{{\mathrm{BKT}}}$\end{document} in the thermodynamic limit. For a finite-sized domain in our case, the universal jump in the phase stiffness is smoothed out by finite-size effects [ 55 ] and the interception temperature merely provides an energy scale for the BKT crossover.…”
mentioning
confidence: 99%