Fatigue has been established to change plantar pressure distribution, yet its impact on hallux valgus (HV) patients, who exhibit morphological and biomechanical changes in the foot, remains insufficiently studied. Twenty-eight female participants, comprising 16 with mild HV and 12 healthy controls, were recruited. Plantar pressures were recorded pre- and post-fatigue using the Footscan platform during self-selected-speed walking trials, fatigue protocol was performed on a treadmill. Foot was segmented into 10 anatomical regions for calculating parameters including maximal force, peak pressure, impulse, contact duration, contact area, and force time-series, alongside assessing the distribution of medial and lateral contact forces (Foot balance) across the groups. During post-fatigue, patients with mild HV demonstrated adaptive changes in plantar pressure distinct from healthy controls, with significant reductions in maximal force, peak pressure, and impulse in the M1 and M2 regions and increases in the M3–M5 regions. In contrast, the control group exhibited an opposite pattern, concentrating pressure in the M1 and M2 regions post-fatigue. The force time-series analysis revealed significant disparities between HV patients and controls, particularly in the M4 and M5 regions, where HV patients showed a less pronounced and lower passive peak in forces. Results show that women with mild HV demonstrate adaptive changes in plantar pressure post-fatigue, distinctly different from healthy individuals, aiding in preventive strategies for fatigue-induced foot injuries for HV patients.