Streptococcus suis (S. suis) is one of the most important porcine pathogens, causing severe pathologies such as meningitis or polyarthritis. It is also a very successful colonizer of mucosal surfaces. The IgM-degrading enzyme of S. suis (IdeSsuis) specifically cleaves porcine IgM, which results in complement evasion. On the basis of our previous finding that IdeSsuis also cleaves the IgM B cell receptor in vitro, we verified IgM B cell receptor cleavage ex vivo in whole regional lymph nodes and investigated the working hypothesis that this IgM B cell receptor cleavage results in a long-lasting impaired B cell function. The number of IgM-secreting cells was determined via ELISpot analysis after porcine peripheral blood mononuclear cells had initially been treated with different recombinant S. suis proteins and subsequently stimulated with interleukin-2 and the toll-like receptor 7/8 ligand R848. Compared with treatment with medium or recombinant muramidase-released protein, treatment with rIdeSsuis but also with a cleavage-deficient variant led to a reduction in the number of IgM-secreting cells as well as the level of secreted IgM. Flow cytometry analysis confirmed that the IgM B cell receptor was cleaved only by rIdeSsuis, and the receptor recovered to pretreatment levels on day 2 after treatment. Flow cytometry analysis of B and T cells incubated with fluorescein-labelled recombinant proteins revealed that different rIdeSsuis variants bind specifically to B cells, most prominently the cleavage-deficient variant. Our results indicate that in vitro interference of rIdeSsuis with the IgM B cell receptor results in long-lasting impaired IgM secretion by B cells after toll-like receptor activation. Further studies are warranted to prove that the modulation of B cell function by IdeSsuis could play a role in vivo.