Glass fiber-reinforced polymer (GFRP) laminates are used in many applications because of their availability, high mechanical properties, and cost-effectiveness. Fiber defects in the form of waviness or wrinkles can occur during the production of multilayered laminates. When curved laminates of significant thickness are produced, the likelihood of such defects increases. Studies have confirmed that fiber deformation during manufacture leads to a reduction in the mechanical properties of laminates. Therefore, early detection of such defects is essential. The main part of this paper deals with research into the possibility of using active infrared thermography to detect wrinkles in curved multilayered GFRP laminates. The size of the artificial wrinkles was assessed by analyzing scans and microimages. The shape deformations of the samples were evaluated by comparing the samples with the mold and the assumed nominal shape. The influence of the out-of-autoclave manufacturing process on the reduction in wrinkles formed without significantly affecting the internal structure of the laminate is presented in this work. This research demonstrated the ability to detect wrinkles in thick curved laminates using active infrared thermography. However, it also showed how the interpretation of the thermographic results is affected by the curvature of the structure, the lack of uniform heating, and the configuration of the thermographic setup.