Slow evaporation method was used to grow pure and KCl (10 mol%) doped KAP single crystal. The solubility and metastable zone width of aqueous solutions of pure and KCl (10 mol%) doped KAP crystal were evaluated to analyze the crystallization process. Measuring the induction period τ, the critical nucleation parameters like interfacial energy (σ), energy of formation of the critical nucleus (∆G*) were determined using the classical theory of nucleation. The structural properties and optical constants of the grown crystals have been put to test and observed that the addition of KCl results in an enhancement of properties of the crystal. Grown crystals were characterized by powder X-ray diffraction. FTIR spectra confirmed the presence of KCl in pure KAP crystal. UV-Visible spectroscopic studies revealed that addition of KCl in pure KAP crystal increased transparency from 75% to 80%. The analysis of the optical absorption data revealed the presence of both indirect and direct transitions and both of these band gaps increased with the addition of KCl. The transmittance data was analyzed to calculate the refractive index, oscillator energy, dispersion energy, electric susceptibility, zero-frequency dielectric constant and both the real and imaginary parts of the dielectric permittivity as a function of photon energy. The moments of ε(E) were also determined. The dispersion i.e. spectral dependence of the refractive index was discussed according to the single-effective oscillator model proposed by Wemple and DiDomenico.