We report detection of <13 CFU of Salmonella per 25 g egg white within 7 h by concentrating the bacteria using microfiltration through 0.2-μm cutoff polyethersulfone hollow fiber membranes. A combination of enzyme treatment, controlled cross-flow on both sides of the hollow fibers, and media selection were key to controlling membrane fouling so that rapid concentration and the subsequent detection of low numbers of microbial cells were achieved. We leveraged the protective effect of egg white proteins and peptone so that the proteolytic enzymes did not attack the living cells while hydrolyzing the egg white proteins responsible for fouling. The molecular weight of egg white proteins was reduced from about 70 kDa to 15 kDa during hydrolysis. This enabled a 50-fold concentration of the cells when a volume of 525 mL of peptone and egg white, containing 13 CFU of Salmonella, was decreased to a 10 mL volume in 50 min. A 10-min microcentrifugation step further concentrated the viable Salmonella cells by 10×. The final cell recovery exceeded 100%, indicating that microbial growth occurred during the 3-h processing time. The experiments leading to rapid concentration, recovery, and detection provided further insights on the nature of membrane fouling enabling fouling effects to be mitigated. Unlike most membrane processes where protein recovery is the goal, recovery of viable microorganisms for pathogen detection is the key measure of success, with modification of cell-free proteins being both acceptable and required to achieve rapid microfiltration of viable microorganisms. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1464-1471, 2016.