Rotary friction welding (RFW) could result in lower welding temperature, energy consumption, or environmental effects as compared with fusion welding processes. RFW is a green manufacturing technology with little environmental pollution in the field of joining methods. Thus, RFW is widely employed to manufacture green products. In general, the welding quality of welded parts, such as tensile strength, bending strength, and surface hardness is affected by the peak temperature in the weld joint during the RFW of dissimilar plastic rods. However, hitherto little is known about the domain knowledge of RFW of acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) polymer rods. To prevent random efforts and energy consumption, a green method to predict the peak temperature in the weld joint of dissimilar RFW of ABS and PC rods was proposed. The main objective of this work is to investigate the peak temperature in the weld joint during the RFW using COMSOL multiphysics software for establishing an empirical technical database of RFW of dissimilar polymer rods under different rotational speeds. The main findings include that the peak temperature affecting the mechanical properties of RFW of PC and ABS can be determined by the simulation model proposed in this work. The average error of predicting the peak temperature using COMSOL software for five different rotational speeds is about 15 °C. The mesh element count of 875,688 is the optimal number of meshes for predicting peak temperature in the weld joint. The bending strength of the welded part (y) using peak welding temperature (x) can be predicted by the equation of y = −0.019 x2 + 5.081x − 200.75 with a correlation coefficient of 0.8857. The average shore A surface hardness, impact energy, and bending strength of the welded parts were found to be increased with increasing the rotational speed of RFW.