The composting process is Nature's way of recycling organic wastes with a good quality organic fertilizer as a result. This process, though, needs of a thoroughly monitoring of temperature and humidity for a good resulting material. During this Ph.D thesis we developed a wireless temperature and humidity autonomous system that monitored from the inside of compost. The fact of measuring and transmitting from the inside implies the need of a protection for the circuit and an issue in the measure.
Temperature suffers delays when measuring from the inside of a protection and, as such, we developed an algorithm, implementable on microcontrollers, to counteract the effects of first order step responses. The conditioning has been optimized in terms of components and consumption, obtaining a theoretical and experimental comparative between the classic conditioning and the use of direct interfaces.
Commercial humidity sensors need to be in direct contact with the environment they are measuring, but that is not possible in compost since they can get damaged. That is why we designed a humidity sensor based on coplanar capacitive electrodes that can measure through a protection layer. Some theoretical models have been obtained for the physical optimization of both the sensor and the influence of the protective layer.
Compost has never been characterised as a transmission environment, and as such, communications in compost are innovative. The heterogeneity of the material and its changes in humidity, temperature and density made the transmission complex. We found the proper frequency band to commercially work in compost and the RF transmission model in compost to estimate attenuation vs distance.
El procés de compostatge és la forma que té la natura de reciclar els residus orgànics amb un fertilitzant orgànic de bona qualitat com a resultat. Aquest procés, però, necessita d’una monitorització de la temperatura i la humitat per a obtenir un bon material resultant. Durant aquesta tesi doctoral s'ha desenvolupat un sistema autònom sense fils de mesura de temperatura i humitat des de dins del compost. El fet de que la mesura i la transmissió s’hagin fet des de dins comporta la necessitat d’un material protector per l’electrònica, la qual cosa esdevé un problema en la mesura. La temperatura pateix retards quan es mesura des de dins d’un material protector, i per això, s’ha desenvolupat un algoritme implemetanble en microcontroladors per contrarestar els efectes de respostes esglaó de primer ordre. S'ha optimitzat el condicionament des del punt de vista de components i consum, obtenint una comparativa teòrica i experimental entre els mètodes de condicionament clàssic i l'ús d'interfícies directes. Els sensors de humitat comercials necessiten estar en contacte directe amb l’ambient a mesurar. Això no és possible en el compost ja que es poden malmetre. Per això s’ha dissenyat un sensor d’humitat basat en elèctrodes capacitius plans que poden mesurar a través de capes de protecció. S'han extret models teòrics per l’optimització física tant del sensor com de la influencia de la capa protectora El compost no ha estat mai caracteritzat com un medi de transmissió, i per tant, les comunicacions dins del compost suposen una novetat. La heterogeneïtat del material i els seus canvis en temperatura, humitat i densitat fan de la transmissió un tema complex. S’ha trobat, a més, la banda de freqüència òptima per treballar comercialment i el seu model de transmissió RF estimant l’atenuació en funció de la distància