Gelatin was doped with 1 %, 3 %, 5 % and 10 % cadmium sulfide nanoparticles in weight concentrations forming the gelatin‐cadmium sulfide nanocomposites and irradiated by various electron beam doses equals 50 kGy, 75 kGy, 100 kGy, and 150 kGy using 3 MeV – 3 mA electron accelerator. The applied alternating current electrical field frequency ranging from 70 Hz to 5 MHz is what caused the fluctuation in dielectric properties and alternating current electrical conductivity of these nanocomposites. The results showed that the films of 1 %, 3 %, 5 %, and 10 % for blank (nanocomposite film without electron beam irradiation) nanocomposites had the highest dielectric parameters (έ, ϵ′′, tan δ) at 0.5 kHz with values of (0.696, 0.0233, 0.034), (0.533, 0.0114, 0.0215), (0.402, 0.001196, 0.003), and (0.459, 0.00418, 0.0091), respectively. However, the lowest dielectric parameters were (0.645, 0.00618, 0.0066), (0.523, 0.00165, 0.0215), (0.417, 0.00035, 0.0008), and (0.455, 0.00066, 0.0015) at 5 MHz, respectively. The highest conductivity values for blank nanocomposites of 1 %, 3 %, 5 %, and 10 % were 1.79×10−4 S/m, 1.45×10−4 S/m, 1.16×10−4 S/m, 1.27×10−4 S/m at 5 MHz, and the lowest values were 1.92×10−8 S/m, 1.49×10−8 S/m, 1.13×10−8 S/m, 1.26×10−8 S/m at 0.5 kHz, respectively. For irradiated nanocomposites at 5 MHz, the dielectric constant order for 1 % was 100 kGy, 150 kGy, 50 kGy, and 75 kGy with values 0.63, 0.537, 0.532, and 0.523, respectively. For 10 % weight concentration, the order was 50 kGy, 100 kGy, 150 kGy, and 75 kGy with values 0.515, 0.477, 0.47, and 0.437, respectively. Otherwise the dielectric constant order for 3 % and 5 % was 100 kGy, 75 kGy, 150 kGy, and 50 kGy. The highest dielectric properties and conductivity values for blank and irradiated nanocomposites were observed at 100 kGy for 1 %, 3 %, and 5 %.