The release of carbon dioxide (CO2) into the atmosphere has accelerated during the last two decades. Elevated atmospheric CO2 concentration (eCO2) is known as an agent that improves plant photosynthesis. However, eCO2 was also correlated with alterations in the macronutrient and micronutrient compositions of various dietary crops. In order to explore the effect of eCO2 on the nutritional and health properties of tomatoes, three parental lines of the Magic population, which includes a large part of the genetic diversity present in large fruit varieties, were used as models. The plants were grown in growth chambers under ambient (400 ppm) or eCO2 (900 ppm) conditions. The macronutrient and micronutrient contents were measured. The anti-oxidant and anti-inflammatory bioactivities were assessed in vitro on activated macrophages. These analyses highlighted that the carbohydrate content was not affected by the eCO2, whereas the protein, carotenoid, lycopene, and mineral contents decreased. Regarding the anti-oxidant properties, no influence of eCO2 exposure was observed. Similarly, the anti-inflammatory properties were not affected by the eCO2. These data are in contrast with previous studies conducted on different plant species or accessions, indicating that the effect of eCO2 on crops’ nutrition and health properties is based on complex mechanisms in which growth conditions and genetic backgrounds play a central role.