Plant defense stimulators (PDSs) rely on the activation of plant innate immunity in order to protect crops against various pests. These molecules are thought to be a safer alternative to classical plant protection products. Given that innate immune systems share common features in plants and vertebrates, PDS can potentially cross-react with innate immunity of non-target organisms. To test this hypothesis, we studied effects of the commercial PDS Stifenia (FEN560), which is composed of crushed fenugreek seeds. We tested various concentrations of Stifenia (0.03–1 mg mL−1) on human peripheral blood mononuclear cells and checked, 20 h later, cell metabolic activity (MA) using XTT assay, cell death by flow cytometry analysis, and IL-1β inflammatory cytokine released in the culture medium using ELISA. Stifenia induced a general decrease of the cell MA, which was concomitant with a dose-dependent release of IL-1β. Our results highlight the activation of human immune cells. The inflammatory effect of Stifenia was partially inhibited by pan-caspase inhibitor. Accordingly, Stifenia induced the release of p20 caspase-1 fragment into the culture medium suggesting the involvement of the NLRP3 inflammasome. Furthermore, we observed that Stifenia can induce cell death. We also tested the effect of Stifenia on Zebrafish larvae. After 24 h of exposure, Stifenia induced a dose-dependent IL-1β and TNFα gene expression. The human-cell-based approach developed in this work revealed a high sensitivity concerning inflammatory properties of a plant protection product. These tests could be routinely used to screen the potential adverse effects of this type of compounds. Finally, our results suggest a potential danger of using extensively certain PDS for crop protection.