Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Selenium (Se) and zinc (Zn) deficiencies have become serious global food security and public health problems. Biofortification through foliar fertilizer is a nonspecific, low-tech, and cost-effective strategy. Se and Zn have overlapping physiological roles and interacting relationships in plants. Mung bean is superior for Se enrichment and an excellent Zn carrier. However, the molecular mechanism underlying the interaction between Se and Zn in the mung bean remains unclear. Herein, Se and Zn accumulation, antioxidant activities, physiological determination, and transcriptomic analysis were performed under both Se and Zn treatments. Common essential roles of Se and Zn in mung bean were reflected by the comprehensively altered ten physiological indexes under both Se2 (24 g•ha −1 ) and Zn1 (1.2 kg•ha −1 ) treatments. Overlapping transcriptome changes and common DEGs in two compared groups revealed that the upregulated expression of sulfate transporters (SULTRs), phosphate transporters (PHTs), and Zinc-regulated/Iron-regulated-like protein (ZIP) family genes under Se and Zn treatments directly promoted both Se and Zn intakes. Furthermore, the altered Se/Sulfur, nitrogen, and carbohydrate metabolisms are closely interlinked with the uptake and assimilation of Se and Zn via the 20 key genes that we filtered through the protein−protein interaction (PPI) network analysis. Further analysis indicated that L-methionine γ-lyase (E 4.4.1.11) genes may play an important role in the transamination of selenomethionine and its derivatives; glutamine synthetase (GS), nitrate reductase (NR), and starch synthase (SS) genes may regulate the nitrogen assimilation and carbohydrate metabolism, which provide more carriers for Se and Zn; glutathione peroxidase (GPx), glutamate-cysteine ligase catalytic subunit (GCLC), and serine acetyltransferase (SAT) genes may accelerate the GSH-GSSH cycle and promote Se and Zn storages. This study provides new molecular insights into the comprehensive improvement of the nutritional quality of mung beans in Se and Zn biofortification productions.
Selenium (Se) and zinc (Zn) deficiencies have become serious global food security and public health problems. Biofortification through foliar fertilizer is a nonspecific, low-tech, and cost-effective strategy. Se and Zn have overlapping physiological roles and interacting relationships in plants. Mung bean is superior for Se enrichment and an excellent Zn carrier. However, the molecular mechanism underlying the interaction between Se and Zn in the mung bean remains unclear. Herein, Se and Zn accumulation, antioxidant activities, physiological determination, and transcriptomic analysis were performed under both Se and Zn treatments. Common essential roles of Se and Zn in mung bean were reflected by the comprehensively altered ten physiological indexes under both Se2 (24 g•ha −1 ) and Zn1 (1.2 kg•ha −1 ) treatments. Overlapping transcriptome changes and common DEGs in two compared groups revealed that the upregulated expression of sulfate transporters (SULTRs), phosphate transporters (PHTs), and Zinc-regulated/Iron-regulated-like protein (ZIP) family genes under Se and Zn treatments directly promoted both Se and Zn intakes. Furthermore, the altered Se/Sulfur, nitrogen, and carbohydrate metabolisms are closely interlinked with the uptake and assimilation of Se and Zn via the 20 key genes that we filtered through the protein−protein interaction (PPI) network analysis. Further analysis indicated that L-methionine γ-lyase (E 4.4.1.11) genes may play an important role in the transamination of selenomethionine and its derivatives; glutamine synthetase (GS), nitrate reductase (NR), and starch synthase (SS) genes may regulate the nitrogen assimilation and carbohydrate metabolism, which provide more carriers for Se and Zn; glutathione peroxidase (GPx), glutamate-cysteine ligase catalytic subunit (GCLC), and serine acetyltransferase (SAT) genes may accelerate the GSH-GSSH cycle and promote Se and Zn storages. This study provides new molecular insights into the comprehensive improvement of the nutritional quality of mung beans in Se and Zn biofortification productions.
This study aims to investigate the effect of ultrasound conditions on the germination kinetics and drying characteristics of a germinated Bengal gram at different drying temperatures. Ultrasound treatment was given to the Bengal gram seeds at two different conditions, that is, before (US) and after soaking (SU), which was then followed by germination. This study also determines mass transfer parameters at drying temperatures of 45°C, 55°C, and 65°C and assesses the influence on the physicofunctional characteristics of a germinated Bengal gram. The germination rate behavior was effectively predicted using a zero‐order kinetic model with the highest R2 value of 0.7974–0.8857 in each nontreated (S) and treated (SU, US) Bengal gram seed, respectively. This study showed that the ultrasound treatment effectively enhanced the germination rate in both conditions, and the highest germination rate was found in pretreated ultrasound Bengal gram samples. The logarithmic thin layer drying model, with the highest average R2 of 0.9954 and the lowest average RMSE value of 0.0160, is the best‐fitted model to predict the changes in moisture ratio in both treated and nontreated conditions. The moisture diffusivity values at drying temperatures ranging from 45°C to 65°C were found in treated (US, SU) and nontreated (S) germinated samples ranging from 3.34 × 10−8 to 4.03 × 10−8 m2/s, 1.30 × 10−8 to 2.01 × 10−8 m2/s, and 6.6 × 10−9 to 8.06 × 10−9 m2/s, respectively. The protein content increased in the ultrasound‐treated sample between 12.37% and 13.50%. The solubility ranged from 8% to 10.36% throughout the treated and nontreated germinated Bengal gram flour. This study provides a unified approach to utilizing ultrasound‐treated germinated Bengal gram seeds as an alternative option to develop a functional product with better nutritional and functional properties.
Selenium (Se) is a beneficial element for plants and is essential for human nutrition. In plants, it plays an important role in the formation of selenocysteine and selenomethionine and in the activation of hydrolytic enzymes, which can aid in seed germination and reduce abiotic stress during germination. The objective of this study was to evaluate the effects of the application of selenium sources and rates to the soil on the physiological quality of cowpea seeds. The experimental design was a randomized block with four replications and a factorial scheme (7 × 2). Two sources of Se (sodium selenate and sodium selenite) and seven rates (0, 2.5, 5, 10, 20, 40 and 60 g ha−1) were used. Physiological characterization was carried out by first counting of germination, germination, emergence, accelerated aging, cold testing, electrical conductivity, length and dry biomass of shoots and roots. Germination after accelerated aging increased with selenate, even at higher rates, whereas selenite provided benefits at lower rates. Selenation linearly increased germination after the cold test and linearly reduced electrolyte leakage as the Se rate increased. The soil application of Se is beneficial for cowpea seed quality. Compared with those treated with sodium selenite, cowpea plants treated with sodium selenate through the soil produce more vigorous seeds. The application of 10 g ha−1 Se in the form of sodium selenate provides seedlings with faster germination and root development and is an alternative for rapid stand establishment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.