Weissmann N, Kummer W. Intermedin/adrenomedullin-2 is a hypoxia-induced endothelial peptide that stabilizes pulmonary microvascular permeability. Am J Physiol Lung Cell Mol Physiol 297: L837-L845, 2009. First published August 14, 2009 doi:10.1152/ajplung.90608.2008.-Accumulating evidence suggests a pivotal role of the calcitonin receptor-like receptor (CRLR) signaling pathway in preventing damage of the lung by stabilizing pulmonary barrier function. Intermedin (IMD), also termed adrenomedullin-2, is the most recently identified peptide targeting this receptor. Here we investigated the effect of hypoxia on the expression of IMD in the murine lung and cultured murine pulmonary microvascular endothelial cells (PMEC) as well as the role of IMD in regulating vascular permeability. Monoclonal IMD antibodies were generated, and transcript levels were assayed by quantitative RT-PCR. The promoter region of IMD gene was analyzed, and the effect of hypoxia-inducible factor (HIF)-1␣ on IMD expression was investigated in HEK293T cells. Isolated murine lungs and a human lung microvascular endothelial cell monolayer model were used to study the effect of IMD on vascular permeability. IMD was identified as a pulmonary endothelial peptide by immunohistochemistry and RT-PCR. Hypoxia caused an upregulation of IMD mRNA in the murine lung and PMEC. As shown by these results, HIF-1␣ enhances IMD promoter activity. Our functional studies showed that IMD abolished the increase in pressure-induced endothelial permeability. Moreover, IMD decreased basal and thrombin-induced hyperpermeability of an endothelial cell monolayer in a receptor-dependent manner and activated PKA in these cells. In conclusion, IMD is a novel hypoxiainduced gene and a potential interventional agent for the improvement of endothelial barrier function in systemic inflammatory responses and hypoxia-induced vascular leakage. endothelial permeability; edema THE PULMONARY VASCULAR ENDOTHELIUM forms a continuous, semipermeable dynamic barrier for water, solutes, and plasma proteins between the intravascular space and underlying tissues. Impairment of the barrier function results in vascular leakage and pulmonary edema formation. Inflammatory cytokines (22, 36), viruses (17, 30), biophysical forces such as stretch and shear stress (25,29), and hypoxia (3, 7, 27, 40) can lead to increased endothelial cell permeability, thus disrupting the segregation between blood plasma and interstitial fluid. Accumulating evidence suggests a pivotal role of the calcitonin receptor-like receptor (CRLR) signaling pathway in stabilizing this barrier function and preventing pulmonary damage. This class B G protein-coupled receptor binds peptides of the calcitonin gene-related peptide (CGRP) family, and its activation results in a marked increase in cytosolic cAMP and subsequent activation of protein kinase A, supposing a coupling to adenylyl cyclase (19,33). Notably, CRLR alone exhibits little affinity to its ligands and becomes ligand selective only when associated with one of the three...