2006
DOI: 10.1103/physrevlett.97.226403
|View full text |Cite
|
Sign up to set email alerts
|

Effect of Fermi Surface Curvature on Low-Energy Properties of Fermions with Singular Interactions

Abstract: We discuss the effect of Fermi surface curvature on long-distance/time asymptotic behaviors of two-dimensional fermions interacting via a gapless mode described by an effective gauge field-like propagator. By comparing the predictions based on the idea of multi-dimensional bosonization with those of the strong-coupling Eliashberg approach, we demonstrate that an agreement between the two requires a further extension of the former technique.In recent years, the behavior of fermions coupled via singular (long-ra… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

2
20
0
1

Year Published

2006
2006
2024
2024

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 16 publications
(23 citation statements)
references
References 41 publications
2
20
0
1
Order By: Relevance
“…If we neglected the Eliashberg self-energy (i.e., expanded around free fermions), we would obtain ω log ω correction to the DOS. This last result agrees with the one obtained by [21] using the same technique as in [12].…”
Section: Momentum Dependence Of the Self-energy And The Density Of Stsupporting
confidence: 92%
See 2 more Smart Citations
“…If we neglected the Eliashberg self-energy (i.e., expanded around free fermions), we would obtain ω log ω correction to the DOS. This last result agrees with the one obtained by [21] using the same technique as in [12].…”
Section: Momentum Dependence Of the Self-energy And The Density Of Stsupporting
confidence: 92%
“…We find that such corrections are dangerous if the expansion around the Eliashberg solution holds in powers of terms of order one. The same expansion around free fermions yields terms which formally diverge as powers of ω −1/3 if one neglects the curvature of the Fermi surface [12,21]. We show, in agreement with [2], that in this situation, the way to construct a fully controllable perturbation expansion around the Eliashberg theory at the QCP is to either assume that the curvature of the Fermi surface is large, or extend the theory to a large number of fermionic flavors, N .…”
Section: Introductionsupporting
confidence: 62%
See 1 more Smart Citation
“…In 2D, one-loop self-energy ω D m becomes ω 2/3 m . It has long been the issue 2,5,9,12,13 whether ω 2/3 m form is the exact expression for a non-Fermi liquid fermionic propagator. The answer to this question is still lacking.…”
Section: Introductionmentioning
confidence: 99%
“…alcance o retardadas), un modelo que presenta comportamientos que no son LF y que puede servir para describir diferentes situaciones tales como transiciones magnéticas en los cupratos, efecto Hall cuántico y la transición de Pomeranchuk (sistemas que poseen sólo interacciones de corto alcance en el modelo microscópico). Sin embargo, la validez de los resultados de la bosonización en estos casos más desafiantes es objeto de debates[34].3.3. Quenches en la interacción y bosonizaciónEn esta sección describiremos cómo hay que modificar el enfoque de la bosonización en equilibrio, descripto antes, para poder calcular funciones de correlación después de un quench de interacción en un gas de fermiones en D > 1.…”
unclassified