Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Lingonberries (Vaccinium vitis‐idaea L.), rowanberries (Sorbus aucuparia L.) and rosehips (Rosa canina L.) positively affect human health due to their healing properties, determined by a high content of bioactive compounds. The consumption of unprocessed wild berries is relevant and encouraged, making their in‐depth microbiological characterization essential for food safety. This study presents the first high‐throughput sequencing analysis of bacterial and fungal communities distributed on the surface of lingonberries, rowanberries and rosehips. Significant plant‐defined differences in the taxonomic composition of prokaryotic and eukaryotic microbiota were observed. The bacterial community on rosehips was shown to be prevalent by Enterobacteriaceae, lingonberries by Methylobacteriaceae and rowanberries by Sphingomonadaceae representatives. Among the fungal microbiota, Dothioraceae dominated on rosehips and Exobasidiaceae on lingonberries; meanwhile, rowanberries were inhabited by a similar level of a broad spectrum of fungal families. Cultivable yeast profiling revealed that lingonberries were distinguished by the lowest amount and most distinct yeast populations. Potentially pathogenic to humans or plants, as well as beneficial and relevant biocontrol microorganisms, were identified on tested berries. The combination of metagenomics and a cultivation‐based approach highlighted the wild berries‐associated microbial communities and contributed to uncovering their potential in plant health, food and human safety.
Lingonberries (Vaccinium vitis‐idaea L.), rowanberries (Sorbus aucuparia L.) and rosehips (Rosa canina L.) positively affect human health due to their healing properties, determined by a high content of bioactive compounds. The consumption of unprocessed wild berries is relevant and encouraged, making their in‐depth microbiological characterization essential for food safety. This study presents the first high‐throughput sequencing analysis of bacterial and fungal communities distributed on the surface of lingonberries, rowanberries and rosehips. Significant plant‐defined differences in the taxonomic composition of prokaryotic and eukaryotic microbiota were observed. The bacterial community on rosehips was shown to be prevalent by Enterobacteriaceae, lingonberries by Methylobacteriaceae and rowanberries by Sphingomonadaceae representatives. Among the fungal microbiota, Dothioraceae dominated on rosehips and Exobasidiaceae on lingonberries; meanwhile, rowanberries were inhabited by a similar level of a broad spectrum of fungal families. Cultivable yeast profiling revealed that lingonberries were distinguished by the lowest amount and most distinct yeast populations. Potentially pathogenic to humans or plants, as well as beneficial and relevant biocontrol microorganisms, were identified on tested berries. The combination of metagenomics and a cultivation‐based approach highlighted the wild berries‐associated microbial communities and contributed to uncovering their potential in plant health, food and human safety.
Lingonberry leaves have been proposed as a potential raw material for nutraceutical products and functional food due to the richness of phenolic and triterpenic compounds. However, contents of these bioactive compounds tend to vary greatly with physiological, climatic, and edaphic conditions, resulting in lingonberry leaves’ nutritional-pharmaceutical quality changes. In this context, we examined the effects of seasonal and geographical factors on phenolic and triterpenoid contents in lingonberry leaves. Quantitative and qualitative differences between samples were determined using validated HPLC-PDA methods. A total of 43 bioactive compounds were found at a detectable level throughout the year in young and old lingonberry leaves, with the highest contents of most compounds observed in samples collected in autumn–first half of spring. This suggests the potential to exploit the continuous biosynthesis for a longer harvesting season. Considerable variations in phytochemical profiles of lingonberry leaves, obtained from 28 locations in Lithuania, were found. Correlation analyses revealed significant negative correlations between contents of particular constituents and sunshine duration, temperature, and precipitation, and positive correlation with air humidity, longitudes, and altitudes of collecting locations and macronutrients in soil. These results suggest that harsh weather is favorable for most identified compounds and it may be possible to achieve appropriate accumulation of secondary metabolites by adjusting edaphic conditions. Taken together, the accumulation of phenolics and triterpenoids in lingonberry leaves highly depends on phenological and geographical factors and the influence of both variables differ for the particular compounds due to different metabolic processes in response to stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.