Purpose
Continuous fiber reinforced thermoplastic composites (CFRTPCs) with great mechanical properties and green recyclability have been widely used in aerospace, transportation, sports and leisure products, etc. However, the conventional molding technologies of CFRTPCs, with high cost and low efficiency, limit the property design and broad application of composite materials. The purpose of this paper is to study the effect of the 3D printing process on the integrated rapid manufacturing of CFRTPCs.
Design/methodology/approach
Tensile and flexural simulations and tests were performed on CFRTPCs. The effect of key process parameters on mechanical properties and molding qualities was evaluated individually and mutually to optimize the printing process. The micro morphologies of tensile and flexural breakages of the printed CFRTPCs were observed and analyzed to study the failure mechanism.
Findings
The results proved that the suitable process parameters for great printing qualities and mechanical properties included the glass hot bed with the microporous and solid glue coatings at 60°C and the nozzle temperature at 295°C. The best parameters of the nozzle temperature, layer thickness, feed rate and printing speed for the best elastic modulus and tensile strength were 285°C, 0.5 mm, 6.5r/min and 500 mm/min, respectively, whereas those for the smallest sectional porosity were 305°C, 0.6 mm, 5.5r/min and 550 mm/min, respectively.
Originality/value
This work promises a significant contribution to the improvement of the printing quality and mechanical properties of 3D printed CFRTPCs parts by the optimization of 3D printing processes.