1987
DOI: 10.1121/1.395564
|View full text |Cite
|
Sign up to set email alerts
|

Effect of frequency dependence of sea-bottom attenuation on the optimum frequency for acoustic propagation in shallow water

Abstract: The optimum frequency for acoustic propagation in shallow water is controlled by a number of physical effects and environmental parameters. This article concentrates on the effect of a nonlinear frequency dependence of the sea-bottom attenuation on the optimum frequency. Experimental data on low-frequency acoustic propagation in shallow water are presented, for which, over the frequency range where the optimum frequency should occur, no apparent optimum frequency is observed. If there is an optimum frequency f… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
6
0

Year Published

1994
1994
2011
2011

Publication Types

Select...
4
4

Relationship

0
8

Authors

Journals

citations
Cited by 22 publications
(7 citation statements)
references
References 0 publications
1
6
0
Order By: Relevance
“…Attenuation (1), provided in Section III, has the classical dependence and this, of course, would seem to recommend it. Attenuation (2) has a nonclassical frequency dependence, but is consistent with transmission observations by others in the general area [1]- [5] and is used in the remainder of the paper. This is not the place to adjudicate the sand-attenuation issue, but it does illustrate how disparate inputs to an otherwise competent propagation model can affect the prediction.…”
Section: A Propagation Calculationssupporting
confidence: 59%
See 2 more Smart Citations
“…Attenuation (1), provided in Section III, has the classical dependence and this, of course, would seem to recommend it. Attenuation (2) has a nonclassical frequency dependence, but is consistent with transmission observations by others in the general area [1]- [5] and is used in the remainder of the paper. This is not the place to adjudicate the sand-attenuation issue, but it does illustrate how disparate inputs to an otherwise competent propagation model can affect the prediction.…”
Section: A Propagation Calculationssupporting
confidence: 59%
“…10. 5 A detailed discussion of the periodic ridge hypothesis is inappropriate in this paper. Note, however, that this directional mechanism can include not only scattering, but also transmission into the uplifted plates.…”
Section: Consider the Band Centered Atmentioning
confidence: 97%
See 1 more Smart Citation
“…The ratio of the sound speed in the bottom to the water sound speed at the water/sediment interface is about 1.056. [33][34][35] With this sound speed ratio, the best match between the measured LF Q values and the predictions of Eq. ͑4͒ requires that the bottom attenuation at sites 1-3 is…”
Section: A Frequency Dependence Of Bottom Reflection Loss At Small Gmentioning
confidence: 58%
“…[2][3][4][5][6][7][8][9][10] The first work on broadband acoustic propagation by Pekeris proposed a simple model to analyze the experimental results of explosive charges in shallow-water regions. 2 This work was later extended by Tolstoy 3 who obtained a solution using a fluid bottom first 11 and later for elastic media with attenuation.…”
Section: Introductionmentioning
confidence: 99%