The pressure-gain combustion concept is a solution envisioned to increase the thermodynamic efficiency of gas turbines. This article addresses the behaviour of piston-less constant-volume combustion in relevant conditions of engine application. For this purpose, a lab-scale combustion vessel (0.3 L) is run in cyclic operation (10 Hz) with an improved control over the boundary conditions. This facility features the spark-ignited, turbulent combustion of n-decane directly injected in preheated air (423 K, 0.4 MPa), with an overall equivalence ratio of 0.9. Solenoid valves are used to perform the air intake and burnt gas exhaust. A 0D analysis is developed and used to compute the gas thermodynamic evolution based on the experimental pressure traces. The effect of the main operating parameters on the combustion process is discussed: ignition delay, exhaust pressure and wall temperature. The vessel is operated without scavenging, hence the exhaust pressure drives the amount and the temperature of residual burnt gas (16-39% according to the 0D analysis). Highly diluted cycles (exhaust pressure 0.2 MPa) exhibit a higher combustion efficiency, but have a longer combustion duration (3 times more) than those of low dilution (exhaust pressure 0.07 MPa). For a higher wall temperature representative of engine combustor (1000 K), the heat losses are directly reduced, which affects the residual burnt gas properties. This also influences the residual gas temperature (870-1030 K) as well as dilution (10-26%).