The use of alternative fuels contributes to the lowering of the carbon footprint of the internal combustion engine. Biofuels are the most important kinds of alternative fuels. Currently, thanks to the new manufacturing processes of biofuels, there is potential to decrease greenhouse gas (GHG) emissions, compared to fossil fuels, on a well-to-wheel basis. Amongst the most prominent alternative fuels to be used in mixtures/blends with fossil fuels in internal combustion (IC) engines are biodiesel, bioethanol, and biomethanol. With this perspective, considerable attention has been given to biodiesel and petroleum diesel fuel blends in compression ignition (CI) engines. Many studies have been conducted to assess the impacts of biodiesel use on engine operation. The addition of alcohols such as methanol and ethanol is also practised in biodiesel–diesel blends, due to their miscibility with the pure biodiesel. Alcohols improve the physico-chemical properties of biodiesel–diesel blends, which lead to improved CI engine operation. This review paper discusses some results of recent studies on biodiesel, bioethanol, and biomethanol production, their physicochemical properties, and also, on the influence of the use of diesel–biodiesel–alcohols blends in CI engines: combustion characteristics, performance, and emissions.