The surge in demand for 3D MOSFETs, such as FinFETs, driven by recent technological advances, is explored in this review. FinFETs, positioned as promising alternatives to bulk CMOS, exhibit favorable electrostatic characteristics and offer power/performance benefits, scalability, and control over short-channel effects. Simulations provide insights into functionality and leakage, addressing off-current issues common in narrow band-gap materials within a CMOS-compatible process. Multiple structures have been introduced for FinFETs. Moreover, some studies on the fabrication of FinFETs using different materials have been discussed. Despite their potential, challenges like corner effects, quantum effects, width quantization, layout dependencies, and parasitics have been acknowledged. In the post-planar CMOS landscape, FinFETs show potential for scalability in nanoscale CMOS, which leads to novel structures for them. Finally, recent developments in FinFET-based sensors are discussed. In a general view, this comprehensive review delves into the intricacies of FinFET fabrication, exploring historical development, classifications, and cutting-edge ideas for the used materials and FinFET application, i.e., sensing.