High levels of c-aminobutyric acid (GABA) accumulate in plant tissues under various stresses and exogenous additives. The purpose of this research is to provide an effective finding that can prove a rapid accumulation of GABA in germinated soybean (Glycine max L.) in response to different additives under hypoxia. Hypoxia-induced GABA accumulation in soybean embryo resulted in part from polyamine oxidation. Response to different concentration of glutamate (Glu), pyridoxal phosphate, arginine, CuCl 2 , NaCl, and CaCl 2 , a significant difference including GABA accumulation, changes of Glutamate decarboxylase (GAD), and Diamine oxidase activity (DAO) activity in germinated soybean under hypoxia occurred (p \ 0.05) and the maximum accumulation of GABA were 4.07, 3.02, 3.50, 3.26, 4.00, and 3.30 g kg -1 DW respectively, which were significantly higher than those germinated soybean under normal culture (CK) and hypoxia culture (CK 0 ) (p \ 0.05). The GAD and DAO have different distributions in cotyledon and embryo of germinated soybean, and the enzyme activity mainly located in embryo of germinated soybean. Germinated soybean is a good resource of GABA-rich food. Different additives have significant effects on GABA production, among which Glu and NaCl are ideal material for GABA accumulation.