Strawberry plants are grown in hydroponics for higher quality and yield, as this system excludes soil-borne disease issues. Recycled hydroponics is practiced to make cultivation cost-effective, sustainable, and environmentally friendly. However, due to recycling of hydroponic nutrient solution, plant root exudates accumulate, leading to autotoxicity, a form of allelopathy that inhibits growth and development. In recent decades, commercial cultivation of strawberry under greenhouse and plant factory conditions following recycled hydroponics has been widely adopted globally. Subsequently, yield decline has also been reported due to development of autotoxicity from the accumulated root exudates. In recycled hydroponic systems, strawberry plant growth is inhibited by root exudates that contain mainly phenolic acids in the culture solution. In this regard, elimination of these accumulated root exudates or allelochemicals from the culture solution would restore inhibited plant growth and yield. A number of research studies have been conducted on autotoxicity in strawberry and possible mitigation methods. These studies suggested that addition of activated charcoal in the nutrient solution, supplementation of auxin on leaves, electro-degradation of root exudates in nutrient solution, and supplementation of amino acids and/or LEDs can effectively remove/degrade/mitigate autotoxicity in strawberry grown under recycling hydroponics. This review mainly discusses the autotoxicity phenomenon in strawberry under recycled hydroponics, the responsible allelochemicals and their mechanism of action, mitigation methods and future research endeavors in this field.