Seed priming is considered to play an essential role in the overall improvement of agricultural crops. The current research work was carried out in order to investigate the comparative effects of hydropriming and iron priming on the germination behavior and morphophysiological attributes of wheat seedlings. The experimental materials consisted of three wheat genotypes including a synthetically derived wheat line , stay-green wheat genotype (Chirya-7), and conventional wheat variety (Chakwal-50). The treatments included hydro (distilled and tap water)-and iron priming (10 and 50 mM) of wheat seeds for 12 h duration. Results indicated that both priming treatment and wheat genotypes exhibited highly different germination and seedling characteristics. These included germination percentage, root volume, root surface, root length, relative water content, chlorophyll content, membrane stability index, and chlorophyll fluorescence attributes. Furthermore, the synthetically derived line (SD-194) was the most promising in majority of the studied attributes by exhibiting a high germination index (2.21%), root fresh weight (7.76%), shoot dry weight (3.36%), relative water content (19.9%), chlorophyll content (7.58%), and photochemical quenching coefficient (2.58%) when compared with stay-green wheat (Chirya-7). The study also found that hydropriming with tap water and priming wheat seeds with low concentrations of iron yielded better results when a comparison was made with wheat seeds primed at high concentrations of iron. Therefore, wheat seed priming with tap water and iron solution for 12 h is recommended for optimum wheat improvement. Furthermore, current findings suggest that seed priming may have the prospect of an innovative and userfriendly approach for wheat biofortification with the aim of enhanced iron acquisition and accumulation in grains.