Nowadays, nanomaterials in liquid crystals and their possible applications in the design of tunable, responsive, and wearable devices are among the most promising research directions. In the majority of cases, all liquid crystal based devices have one thing in common; namely, they are driven by electric fields. This type of device driving can be altered by minor amounts of ions typically present in liquid crystal materials. Therefore, it is very important to understand how nanodopants can affect ions in liquid crystals. In this paper, a recently developed model of contaminated nanoparticles is applied to existing experimental data. The presented analysis unambiguously indicates that, in general, nanomaterials in liquid crystals can behave as a source of ions or as ion traps. Physical factors determining the type of the nanoparticle behaviour and their effects on the concentration of ions in liquid crystals are discussed.