To investigate the effect of chronic hypoxia (HPX) on vasodilation of the fetal heart, we exposed pregnant guinea pigs to room air or 12% O(2) for 4, 7, or 10 days. We excised hearts from anesthetized fetuses (60 +/- 3 days; 65-day gestation = term) and measured changes in both the coronary artery pressure of the isolated constant-flow preparation and endothelial nitric oxide synthase (eNOS) mRNA of fetal ventricles. Dilator responses to cumulative addition (10(-9)-10(-5) M) of acetylcholine and sodium nitroprusside in prostaglandin F(2alpha) (5 x 10(-6) M)-constricted hearts were similar among normoxia (NMX), 4-, 7-, and 10-day HPX (control). Nitro-L-arginine (L-NA, 10(-4)M), a NOS inhibitor, inhibited maximal acetylcholine dilation of hearts exposed to 10-day HPX greater than NMX, 4-, and 7-day HPX. Hypoxia (after 7 and 10 days) increased eNOS mRNA of fetal ventricles compared with NMX and 4-day HPX. 4-Aminopyridine (3 mM), a voltage-dependent K(+)-channel inhibitor, inhibited acetylcholine- but not sodium nitroprusside-induced dilation of NMX and 10-day HPX hearts to a similar magnitude. Glibenclamide (10(-5) M), an ATP-sensitive K(+)-channel inhibitor, had no effect on vasodilation. We conclude that chronic HPX increases the contribution of NO but does not alter K(+)-channel activation in response to acetylcholine-stimulated coronary dilation. Thus increases in NO production via upregulation of eNOS gene expression may be an adaptive response to chronic HPX in the fetal coronary circulation.