This paper reports investigations into the influence of hydrogen on the magnetic properties of the YCo 3 -H system. We report results on the magnetic structure and magnetic transitions of YCo 3 using a combination of neutron powder diffraction measurements and first-principles full potential augmented plane wave + local orbital calculations under the generalized gradient approximation. The ferromagnetic and ferrimagnetic structures are examined on an equal footing. However, we identify that, no matter which structure is used as the starting point, the neutron diffraction data always refines down to the ferrimagnetic structure with the Co 2 atoms having antiparallel spins. In the ab initio calculations, the inclusion of spin-orbit coupling is found to be important in the prediction of the correct magnetic ground state. Here, the results suggest that, for zero external field and sufficiently low temperatures, the spin arrangement of YCo 3 is ferrimagnetic rather than ferromagnetic as previously believed. The fixed spin moment calculation technique has been employed to understand the two successive field-induced magnetic transitions observed in previous magnetization measurements under increasing ultrahigh magnetic fields. We find that the magnetic transitions start from the ferrimagnetic phase ͑0.61 B / Co͒ and terminate with the ferromagnetic phase ͑1.16 B / Co͒, while the spin on the Co 2 atoms progressively changes from antiparallel ferrimagnetic to paramagnetic and then to ferromagnetic. Our neutron diffraction measurements, ab initio calculations, and the high field magnetization measurements are thus entirely self-consistent.