Abstract:The present study is to investigate the effect of post heat treatment on the microstructures and mechanical properties of a submerged-arc-welded 304 stainless steel. The base material consisted of austenite and long strips of delta-ferrite surrounded by Cr-carbide, and the welds consisted of delta ferrite and austenite matrix. For the heat treatment at 850 • C or lower, Cr-carbides were precipitated in the weld metal resulting in the reduction of elongation. The strength, however, was slightly reduced despite the presence of Cr-carbides and this could possibly be explained by the relaxation of internal stress and the weakening of particle hardening. In the heat treatment at 1050 • C, the dissolution of Cr-carbide and disappearance of delta ferrite resulted in the lower yield strength and higher elongation partially assisted from deformation-induced martensitic transformation. Consequently, superior property in terms of fracture toughness was achieved by the heat treatment at 1050 • C, suggesting that the mechanical properties of the as-weld metal can be enhanced by controlling the post weld heat treatment.