Quicklime is produced through the thermal processing of limestone in industrial kilns. During quarry operations, fine particulate quarry dust adheres to limestone lump surfaces, increasing the bulk concentration of impurities in limestone products. During thermal processing in a kiln, impurities such as Si, Mg, Al, Fe, and Mn react with Ca, reducing quicklime product quality. Which reactant phases are formed, and the extent to which these result in a reduction in quality, has not been extensively investigated. The present study investigated as-received and manually washed limestone product samples from two operational quarries using elemental compositions and a developed predictive multi-component chemical equilibrium model to obtain global phase diagrams for 1000–1500 °C, corresponding to the high-temperature zone of a lime kiln, identifying phases expected to be formed in quicklime during thermal processing. The results suggest that impurities found on the surface of the lime kiln limestone feed reduce the main quality parameter of the quicklime products, i.e., calcium oxide, CaO (s), content by 0.8–1.5 wt.% for the investigated materials. The results also show that, in addition to the effect of impurities, the quantity of CaO (s) varies greatly with temperature. More impurities result in more variation and a greater need for accurate temperature control of the kiln, where keeping the temperature below approximately 1300 °C, that of Hatrurite formation, is necessary for a product with higher CaO (s).